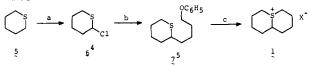

On the Stereostructure of Eastman's Sulfonium Salt. Pyramidal Inversion Barrier of an Unstabilized Sulfonium Ylide

Sir:

In 1959, Eastman and Kritchevsky reported the synthesis of bicyclic sulfonium salt 1.¹ This salt is of interest to us as a substrate for further annelation with the ultimate goal of producing macrocycles $(1 \rightarrow 3)$. Although several crystalline,

sharp-melting salts were prepared $(X^- = Br^-, picrate, I^-)$,¹ no information regarding the stereostructure (**1a** or **1b**) was adduced. We have examined this question and find that Eastman's sulfonium salt is a 1:1 mixture (molecular compound) of stereoisomers **1a** and **1b**. We have also determined



the activation parameters for pyramidal inversion of the sulfonium salt $(1b \rightarrow 1a)$ and the derived sulfonium ylide $(4a \rightarrow 4b)$.

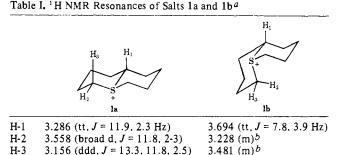
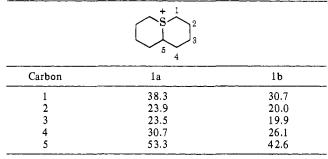

Because Eastman's reported synthesis of 1 is somewhat tedious (six steps from 1-chloro-4-phenoxybutane, 23% overall yield), we have developed the alternative synthesis outlined in Chart I, which produces 1 ($X^- = Br^-$, mp 266-267 °C) in 30-43% overall yield. The corresponding fluoborate salt (1, $X^- = BF_4^-$, mp 174-175 °C)² is obtained by treatment of the bromide with dimethoxycarbonium fluoborate.³

Chart I

^{*a*}*N*-Chlorosuccinimide. benzene. ^{*b*}C₆H₅OCH₂CH₂CH₂CH₂MgCl.¹ ^{*c*}HBr. (CH₃CO)₂O.

Thermal equilibration of the 1:1 mixture of sulfonium fluoborates 1a and 1b in chloroform or methylene chloride at 110 °C for 24 h affords an equilibrium mixture (70% 1a, 30% 1b) from which pure 1a ($X^- = BF_4^-$) may be obtained by repeated crystallization. Treatment of the 1:1 mixture of 1a and 1b (X^- = BF_4^-) with *n*-butyllithium in THF at -23 °C yields a mixture of ylides 4a and 4b, which is allowed to equilibrate for 2 h, then is quenched with fluoboric acid to afford sulfonium salt 1b ($X^- = BF_4^-$, mp 173-173.5 °C), uncontaminated by stereoisomer 1a. From this result, it is concluded that equilibrium 4a \Longrightarrow 4b is biased heavily in favor of 4b.

^{*a*} Spectra were determined on 1% solution in D₂O. Data are pressented as δ (ppm downfield from internal Me₃SiCD₂CD₂CO₂-Na⁺), (multiplicity, coupling constants in Hz). ^{*b*} These assignments are uncertain and may be reversed.


Stereostructures of **1a** and **1b** were assigned on the basis of the 360-MHz ¹H NMR spectra of pure **1b** and a sample highly enriched in isomer **1a**. Pertinent ¹H NMR resonance are summarized in Table I. The most conclusive indication is the resonance due to the bridgehead proton in the more stable sulfonium salt **1a** (δ 3.286 ppm), which appears as a triplet of triplets with coupling constants typical of axial-axial and axial-equatorial arrangements. Having made stereostructural assignments based on high-resolution ¹H NMR spectra, it is convenient to use ¹³C NMR to analyze mixtures of the two stereoisomeric salts; assignments are tabulated in Table II.⁶

Activation parameters for pyramidal inversion of salt 1 (X⁻ = BF₄⁻) were determined by thermal equilibration of the 1:1 mixture of stereoisomers in CD₂Cl₂ at three temperatures over the range 90.07-105.80 °C. Analysis was accomplished by ¹³C NMR. A plot of ln k/T vs. 1/T gives $\Delta H^{\pm} = 28.0 \pm 0.9$ kcal mol⁻¹ and $\Delta S^{\pm} = -3.1 \pm 2.5$ eu. Activation parameters for pyramidal inversion of ylide 4 were determined at -23 and -32 °C, starting with a 7:3 mixture of salts 1a and 1b (X⁻ = BF₄⁻). The ylide mixture was prepared by deprotonation with *n*-BuLi at -72 °C. The samples were warmed to the appropriate temperature and kept for a period of line, then quenched by the addition of fluoboric acid. A plot of ln k/T vs. 1/T gives $\Delta H^{\pm} = 20.5$ kcal mol⁻¹ and $\Delta S^{\pm} = 6$ eu.⁷

The observed activation parameters for pyramidal inversion of salt 1 are similar to those reported for other sulfonium salts.⁸ Although activation parameters for pyramidal inversion of an unstabilized sulfonium ylide have not previously been reported, Darwish has studied sulfonium salt 7^{8c} and the corresponding stabilized ylide 8.⁹ Salt 7 undergoes inversion with $\Delta H^{\ddagger} = 29.2$

kcal mol⁻¹ and $\Delta S^{\pm} = +2$ eu, corresponding to $\Delta G^{\pm}_{50^{\circ}} = 28.6$ kcal mol⁻¹. Ylide 8 inverts with $\Delta H^{\pm} = 23.3$ kcal mol⁻¹ and $\Delta S^{\pm} = -2.5$ eu, corresponding to $\Delta G^{\pm}_{50^{\circ}} = 24.1$ kcal mol⁻¹. The difference in ΔH^{\pm} between salt 1 (1a \rightarrow 1b) and ylide 4 (4b \rightarrow 4a) of 7.5 kcal mol⁻¹ is similar to the difference in ΔH^{\pm} (5.9 kcal mol⁻¹) between sulfonium salt 7 and ylide 8. On the other hand, the difference in ΔG^{\pm} between salt 1 and ylide 4 (10.4 kcal mol⁻¹ at 50 °C)¹⁰ is considerably greater than the analogous $\Delta \Delta G^{\pm}$ for salt 7 and stabilized ylide 8 (4.5 kcal mol⁻¹ at 50 °C).¹¹ This difference originates largely in the

Table II. 13C NMR Chemical Shifts of Salts 1a and 1ba

^a Spectra were determined on ca. 25% solutions in CDCl₂. Data are presented in ppm downfield from internal Me Si.

entropy terms. While ΔS^{\pm} for ylide 8 is more negative than ΔS^{\pm} for salt 7 by 4.5 eu, ΔS^{\pm} for ylide 4 is more positive than ΔS^{\pm} for salt 1 by 9.1 eu. Finally, it has recently been shown that conversion of 1,3-bissulfonium salt 9 to the corresponding ylide decreases ΔG^{\pm} for pyramidal inversion at sulfur by at least 5 kcal mol⁻¹.^{12,13}

We are now engaged in studying the stereochemistry of the reaction of ylides 4a and 4b with various electrophiles.

Acknowledgment. This research was supported by a grant from the United States Public Health Service (No. Al-11607).

References and Notes

- (1) R. H. Eastman and G. Kritchevsky, J. Org. Chem., 24, 1428 (1959).
- (2) Anal. Found: C, 44.19; H, 6.98; S, 12.89.
- (a) R. F. Borch, J. Org. Chem., 34, 627 (1969).
 (4) D. L. Tuleen and R. H. Bennett, J. Heterocycl. Chem., 6, 115 (1969).
- (5) Anal. Found: C, 71.70; H, 8.79.
- (6) Note that each carbon in the more stable sulfonium salt 1a resonates downfield from the corresponding carbon in isomer **1b**, a situation parallel to that found in *trans-* and *cis*-decalin; J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972, p 66. The precision of these parameters is obviously not high because of the
- (7) difficulty of maintaining precise temperature control in this range and also because equilibration rates were determined at only two temperatures. However, treatment of the rates at -23 and -32 °C by the Eyring equation yields $\Delta G^{\pm}_{-23^{\circ}} \approx 18.92 \text{ kcal mol}^{-1}$ and $\Delta G^{\pm}_{-32^{\circ}} \approx 18.97 \text{ kcal mol}^{-1}$. suggesting that the activation parameters are reasonably good
- (8) (a) D. Darwish and G. Tourigny, J. Am. Chem. Soc., 88, 4303 (1966); (b) R. Scartazzini and K. Mislow, *Tetrahedron Lett.*, 2719 (1967); (c) D. Darwish, *Mech. React. Sulfur Compd.*, **3**, 33 (1968); (d) A. Garbesi, N. Corsi, and A. Fava, *Helv. Chim. Acta*, **53**, 1499 (1970).
- (9) D. Darwish and R. L. Tomilson, J. Am. Chem. Soc., 90, 5938 (1968).
- (10) Extrapolated values
- (11) The free energy of activation of ylide 8 was calculated from the published rate constant, using the Eyring equation
- (12) S. Wolfe, P. Chamberlain, and T. F. Garrard, Can. J. Chem., 54, 2847 (1976).
- (1970).
 (13) The ΔG⁺ ≥ 25 kcal mol⁻¹ reported for salt 9 is highly approximate, having been determined from a single analysis at −10 °C. The ΔG⁺ = 19.7 kcal mol⁻¹ for the derived ylide was determined at 2.4° by monitoring the equilibration at several points, although complete experimental data are not available.12

David M. Roush, Clayton H. Heathcock*

Department of Chemistry, University of California Berkeley, California 94720 Received November 29, 1976

MINDO/3 Study of the Addition of Singlet Oxygen $({}^{1}\Delta_{g}O_{2})$ to 1,3-Butadiene

Sir:

The well-known¹ π -cycloaddition of singlet molecular oxygen $({}^{1}\Delta_{g}O_{2}, 1)$ to conjugated dienes to form six-membered

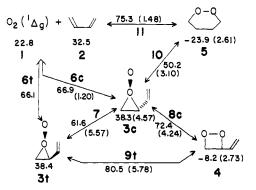


Figure 1. Heats of formation (kcal/mol) and dipole moments (D, in parentheses) of species involved in the reaction of ${}^{1}\Delta_{g}O_{2}$ with 1.3-butadiene and of transition states involved in their interconversions.

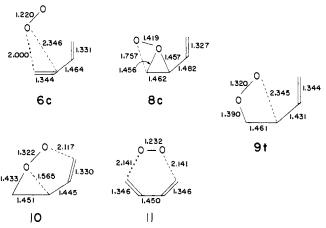


Figure 2. Geometries of transition states (bond lengths in Å).

cyclic peroxides bears an obvious resemblance to the Diels-Alder reaction, and both processes were until recently thought to involve synchronous² pericyclic mechanisms. However McIver³ has shown that π -cycloadditions are unlikely to involve symmetrical transition states and MINDO/34 studies⁵ here have indeed shown that the transition states for several typical Diels-Alder reactions are very unsymmetrical,⁶ one of the new bonds being almost completely formed, the other hardly at all. Our MINDO/3 calculations9 for several reactions of 1 with olefins have moreover indicated that these are two-step² processes, involving peroxiranes or zwitterions as stable intermediates. We therefore felt it of interest to extend our MINDO/3 studies to the reaction of 1 with 1,3-butadiene (2)

Figure 1 shows the reactions we studied, using the techniques previously described.⁹ The calculated heats of formation and dipole moments of the various stable species and transition states are also indicated in Figure 1 while Figure 2 shows the structures calculated for the transition states. These results imply that the first step in the reaction of 1 with 2 is the formation of a peroxirane which can exist as a cis (3c) or trans (3t)isomer. The activation energy for addition is 10.8 kcal/mol and the transition states (6c, 6t) are reactant-like in their geometric and electronic structures. The intermediate *cis*-peroxirane (3c) can rearrange easily (ΔE^{\pm} , 11.9 kcal/mol) to the cyclic peroxide 5.

The overall activation energy for formation of 5 by this two-step route is less by 9.2 kcal/mol than by concerted 1,4- π -cycloaddition of 1 to 2. This latter reaction could indeed be studied only by enforcing C_s symmetry. The corresponding "transition state" (11), while a stationary point on the potential surface, is not a true transition state because the force constant matrix has two negative eigenvalues (cf. ref 9 and 10).

The intermediates, 3c and 3t, can also rearrange to vinyl-